2007年4月30日

供應商品管

Ten QC Principles for Vendee

1. 採購與供應雙方均對品質負責﹐同時在品管合作上有互信與合作
2. 採購與供應雙方均為獨立之個體﹐且尊重對方之獨立性
3. 採購方有義務提供清楚之資訊與要求﹐使供應方可以清楚知道該提供之商品
4. 進行實質採購前﹐雙方應就品質,數量,價格,交貨,付款等﹐達成合理之合約
5. 供應方有義務提供使採購方滿意之品質﹐同時應提供採購方所要求之相關資料
6. 雙方應就各項條款之評估方法事前達成協議
7. 在合約中應建立相關辦法﹐使爭議發生時有解決之道
8. 雙方應考慮對方之立場﹐交換優用之資訊以達成較佳之品質管制
9. 雙方均應執行相關之控管(訂單,庫存,帳務管理等)﹐使雙方關係可以維繫。
a. 雙方在交易過程中﹐始終以最終消費者之利益為念

參考資料:What is Total Quality Control? The Japanese Way; by K. Ishikawa

供應商選擇

供應商選擇之基礎:
1. 供應商了解採購方的經營理念﹐有合作意願
2. 供應商有穩定的管理系統﹐並為業界所敬重
3. 供應商擁有高技術水準﹐同時有能力進行新科技的研發
4. 供應商有能力供應採購者所需求之產品﹐同時有製程能力滿足其品質要求
5. 供應商應有能力提供所需之產品﹐或有能力投資以滿足需求
6. 供應商無洩漏商業機密之顧慮
7. 除了價格與交期都符合需求外﹐供應商應在交通運輸與溝通聯繫上順暢無礙

參考資料:What is Total Quality Control? The Japanese Way; by K. Ishikawa

2007年4月28日

QC Circles, 品管圈

所謂品管圈﹐是由一群第一線作業人員所組成﹐以改善品質為中心﹐TQM的自治組織。
品管圈之概念起於一本月刊 Gemba-to-QC (現場品管,1962.4創刊)﹐又名QC for Foreman (FQC)。

品管圈活動十大特色(參考What is Total Quality Control? by Kaoru Ishikawa):
1. Self-development
2. Voluntarism
3. Group activity
4. participation by all employees
5. utilization of QC techniques
6. activities closely connected with the workplace
7. vitality and continuity in QC activities
8. mutual development
9. originality and creativity
a. awareness of quality, of problems, and of improvement

日本科技連相關網頁

2007年4月17日

直通率(First Pass Yield, FPY)

直通率(First Pass Yield, FPY)是一個生產線產出品質水準的一項指標﹐簡單的說﹐生產線投入100套材料﹐在製程之中第一次就通過所有測試的產品的良品數量就是所謂的直通率﹐因此經過生產線的重工(Rework)或修復才通過測試的產品不列入FPY的計算。

上述的定義﹐在實務的計算上有其困難﹐因為投入批量的大小不一﹐批量完成的日期不定﹐所以實際的計算採用下面的計算式:

FPY = p1 x p2 X p3 ...

其中 p1,p2,p3&等為產線上的每一個測試站的首次良率﹐同樣的對於重工或修復後的產品不列入計算。透過這個計算式﹐我們可以知道及時的產線直通率﹐同時這個直通率有時比良率更能代表生產線真正的品質水準。

註:Kaoru Ishikawa 的 What is Total Quality Control? The Japanese Way 稱之為 go-straight-percentage

2007年4月16日

Quality Assurance Unit, QAU

品質保證最小單位(Quality Assurance Unit, QAU)﹐與規格之定義有關﹐例如肥料之含硫量25%﹐是以每頓為品質保證單位?還是以每公斤為保證單位?其檢驗方式﹑抽樣方式與製造流程等都會隨之改變。

參考資料:p.49 What is Total Quality Control? The Japanese Way; by Kaoru Ishiwawa

可用度(Availability)

可用度(Availability)代表儀器設備可以被使用的時間比例﹐它與產品之可靠度(Reliability)有關﹐可靠度高的儀器或產品﹐其MTBF會較高﹐因此可用度也會高﹐但是另外還有一些因素也會影響產品之可用度﹐說明如下:

1.平均維修時間(Mean Time To Repair,MTTR):這是設備故障之後﹐在所有零件與維修設備完備的情況下﹐平均之修復時間。與產品的易維修設計是否充分考量有關﹐充分考量之產品易於維修﹐反之則否。(MTTR是個容易混淆的縮寫﹐Mean Time To Respond, Mean Time To Recovery,Mean Time To Restore都有可能﹐應小心使用此縮寫)

2. 維修延遲(Repair Delay):這裡泛指一切阻礙維修在第一時間進行的所有延遲﹐包括維修人員﹑維修零組件﹑維修設備等等之延遲。降低維修延遲時間﹐有賴良好的產品設計與規劃良善的後勤支援﹐所謂良好的產品設計﹐包括採用標準化零件﹑模組化設計﹑簡易維修功能等設計﹐以降低因為缺乏維修零件與維修設備所導致的維修延遲!

可用度 = Uptime/ (Total Time) = MTBF / (Total Time) = MTBF / (MTBF + MDT) = MTBF / (MTBF + MTTR + Delay)

其中 MDT (Mean Down Time) 為平均停機時間﹐是維修延遲時間與平均維修時間之總和

參考資料:
Engineering Design for Producibility and Reliability         by John W. PriestDesign for manufacturability and Concurrent Engineering        by David M. Anderson

cross threaded

cross threaded是指螺紋未依正常程序作業﹐造成不正常雙螺紋線﹐導致交錯螺紋 or 俗稱:亂牙﹐使對鎖件無法正常鎖入或鎖一半。
例如螺絲之外芽是由兩塊牙版相互輾牙而程﹐兩牙不對稱即造成此亂牙現象﹐又如螺帽之內牙是牙攻未依內導倒角攻入或重攻牙。
另一個用法使陰陽螺紋之錯鎖﹐造成對鎖工件無法正確鎖合﹐謂之cross threaded。

參考資料:Justing Kuo

2007年4月11日

四級產業(Quaternary Industry)

四級產業(Quaternary Industry):又稱知識產業(Intellectual services)﹐如研究﹑開發﹑資訊等產業﹐曾被視為第三級產業的一部份。

相關字詞:一級產業(Primary Industry)二級產業(Secondary Industry)三級產業(Tertiary Industry)

參考資料:wikipeida, Encyclopeadia Britannica

2007年4月10日

一級產業(Primary Industry)

一級產業(Secondary Industry)又稱為一級工業﹐將原始資源轉化為產品之工業﹐謂之一級產業﹐包括農業﹑漁業﹑礦業等﹐一般人所俗稱的原料業也屬一級產業。
某些原料的分裝﹑純化等作業﹐則歸類為二級產業﹐尤其是某些運送困難﹑無法買賣的原料的後處理等。

相關字詞:二級產業(Secondary Industry), 三級產業(Tertiary Industry)四級產業(Quaternary Industry)

參考資料:wikipeida, Encyclopeadia Britannica

二級產業(Secondary Industry)

二級產業(Secondary Industry)又稱為二級工業﹐也就是吾人所俗稱的製造業。以一級產業之原料加工成可以使用的產品﹐稱之為二級產業。
某些原料的分裝﹑純化等作業﹐仍可歸類為二級產業﹐尤其是某些運送困難﹑無法買賣的原料的後處理等。
相關字詞:一級產業(Primary Industry), 三級產業(Tertiary Industry)四級產業(Quaternary Industry)
參考資料:wikipeida, Encyclopeadia Britannica

三級產業(Tertiary Industry)

三級產業(Tertiary Industry):服務業(Service Industry)﹐其服務對象可以是企業﹐也可以是最終消費者﹐通稱為服務業。

相關字詞:一級產業(Primary Industry)二級產業(Secondary Industry),四級產業(Quaternary Industry)

參考資料:wikipeida, Encyclopeadia Britannica

2007年4月8日

特殊因與共同因 (Special causes, Common causes)

共同因(Common Causes):舒華特稱為機遇因(Chance Causes)﹐在穩定之系統中﹐其變異由一群共同因所主宰。

共同因有如下之特性:
1. 共同因為數眾多﹐且持續﹑動態﹑小幅度的變動(例如環境溫溼度﹑工作環境的燈光亮度等)
2. 個別共同因對系統之變異無主導性(即個別共同因不會造成系統異常之變異﹐不會使系統之反應落在管制界限之外等)
3. 共同因之總體影響可以統計預測之(總是在管制界限內﹐不會有連續八點在管制圖單側﹐不會有連續六點程上升或下降趨勢等)

特殊因(Special Causes):舒華特稱為可歸屬因(Assignable Causes)﹐特殊因會造成系統之不穩定。

特殊因有如下之特性:
1. 特殊因造成系統之不可預測(使系統落在管制界限外﹑連續六點呈上升趨勢等)
2. 單一的特殊因對系統有主導性
3. 特殊因常為新出現的系統變數(如更換作業員﹑更換機台﹑更換供應商等)

SPC, EPC

統計製程管制(Statistical Process Control, SPC):透過統計知識﹐持續監控製程﹐藉此降低系統之變異﹐改善系統之品質之方法﹐謂之SPC。

工程製程管制(Engineering Process Control, EPC)﹐有稱為自動製程管制(Automatic Process Control, APC):基本上是一種透過補償來改善品質的做法﹐應用在某些具有自動量測能力製程﹐透過自動量測之結果自動補償﹐藉此達到改善產品品質之目的。此法有其使用上的限制﹐通常應用在量測值有趨勢性的製程﹐例如自動車削作業﹐EPC可試著補償刀具之磨損值﹐使車削尺寸更接近設計中心值﹐同時也可延長刀具更換時間。

2007年4月7日

廣義品質與狹義品質(Big Q and Little Q)

何謂品質?此一名辭之定義隨時間改變。1980年代後﹐廣義品質(Big Quality, Big Q)之觀念被廣為接受﹐原本之品質定義被稱為狹義品質(Little Quality, Little Q)。

Topic Little Q Big Q
產品 製造之產品 所有的產品﹐包括服務在內
流程 與製造相關之流程 所有流程(製造﹑銷售﹑採購﹑會計等)
工業 製造業 製造業﹑服務業﹑醫療業及政府部門等
品質問題 技術問題 生意問題(Business Problem)
客戶 所有購買產品者 所有受到產品影響者















參考資料:

Juran's Quality Handbook 5th Edition, 2.3, 2.4

缺陷密度(Defect Density, DD)

缺陷密度(Defect Density, DD)為軟體之品質指標﹐其定義為已知缺陷數量除以軟體大小

DD = 已知缺陷數量/軟體大小

所謂已知缺陷數量﹐通常針對特定軟體的某段特定時間﹐統計所有此段時間所確認之缺陷數量﹐如
1. 軟體建構完成後之所有缺陷數量
2. 軟體在某段檢驗時間內之所有發現缺陷數量
3. 軟體上市後所發現之所有缺陷數量等

所謂軟體大小﹐通常以軟體之行數(Line of Code, LOC)表之

統計品管之父舒華特(Walter A. Shewhart)

舒華特博士(Walter A. Shewhart)被稱為統計品管之父﹐於1924年5月16日寫下長僅一頁的備忘錄﹐建議他的主管採行目前稱為統計管制圖的品管技術。這簡單的一紙內容﹐徹底改變了工業界對品質的看法與做法﹐從品質檢驗的時代﹐慢慢進入了統計品管的時代。
Walter A. Shewhart
Father of statistical quality control
Shewhart simulated theoretical models by marking numbers on three different sets of metal-rimmed tags. Then he used an ordinary kitchen bowl  the Shewhart bowl  to hold each set of chips as different sized samples were drawn from his three different populations. There was a bowl, and it played a vital role in the development of ideas and formulation of methods culminating in the Shewhart control charts.
 Ellis R. Ott, Tribute to Walter A. Shewhart, 1967
The industrial age was easing into its second century when a young engineer named Walter A. Shewhart came along and altered the course of industrial history. Shewhart, ASQs first Honorary member, successfully brought together the disciplines of statistics, engineering, and economics and became known as the father of modern quality control. The lasting and tangible evidence of that union for which he is most widely known is the control chart, a simple but highly effective tool that represented an initial step toward what Shewhart called the formulation of a scientific basis for securing economic control.
Shewhart was concerned that statistical theory serve the needs of industry. He exhibited the restlessness of one looking for a better way. A man of science who patiently developed and tested his ideas and the ideas of others, he was an astute observer of developments in the world of science and technology. While the literature of the day discussed the stochastic nature of both biological and technical systems, and spoke of the possibility of applying statistical methodology to these systems, Shewhart actually showed how it was to be done; in that respect, the field of quality control can claim a genuine pioneer in Shewhart. His monumental work, Economic Control of Quality of Manufactured Product, published in 1931, is regarded as a complete and thorough exposition of the basic principles of quality control.
A strong background in the sciences and engineering prepared Shewhart for a life of accomplishments. He graduated from the University of Illinois with bachelors and masters degrees, and he received a doctorate in physics from the University of California at Berkeley in 1917. He taught at the universities of Illinois and California, and he briefly headed the physics department at the Wisconsin Normal School in LaCrosse.
Most of Shewharts professional career was spent as an engineer at Western Electric from 1918 to 1924, and at Bell Telephone Laboratories, where he served in several capacities as a member of the technical staff from 1925 until his retirement in 1956. He also lectured on quality control and applied statistics at the University of London, Stevens Institute of Technology, the graduate school of the U.S. Department of Agriculture, and in India. He was a member of the visiting committee at Harvards Department of Social Relations, an honorary professor at Rutgers, and a member of the advisory committee of the Princeton mathematics department.
Called upon frequently as a consultant, Shewhart served the War Department, the United Nations, and the government of India, and he was active with the National Research Council and the International Statistical Institute. He was an honorary member of Englands Royal Statistical Society and the Calcutta Statistical Association. He was a fellow and officer of the Institute of Mathematical Statistics, the American Association for the Advancement of Science, and the American Statistical Association, and a fellow of the Econometric Society, the International Statistical Institute, and the New York Academy of Science. He served for more than 20 years as the first editor of the Mathematical Statistics Series published by John Wiley and Sons.
Shewhart wrote Statistical Method from the Viewpoint of Quality Control in 1939 and gained recognition in the statistical community. In addition, he published numerous articles in professional journals, and many of his writings were held internally at Bell Laboratories. One of these was the historic memorandum of May 16, 1924, in which he proposed the control chart to his superiors.
An element in Shewharts success was his searching out other bright and knowledgeable individuals for their ideas, methodically cultivating these sources and drawing from them information and advice in a way that endeared him to all. In a series of tributes to Shewhart published in Industrial Quality Control in August 1967, the most striking comment from the contributorsmany of whom were themselves important figures in the development of the quality control fieldwas their respect for Shewharts gentlemanly approach and sincere interest in the work and concerns of others. His character is summed up in comments made by the chairman of the committee that awarded the first Shewhart Medal:
The act of awarding the medal focuses the spotlight of public attention on the recipient, revealing in clear light the qualities that have won for him the esteem of his peers. What are the qualities that lead us to so honor a man as to give him a medal? First of all, he must have intellectual ability, enabling him to clear away a little of the dark cloud of ignorance that always surrounds us. Second, he must have the generosity of spirit that leads him to so express and restate his pioneering ideas that other members of his profession may benefit from them. And finally, he must have that warmth of human feeling that marks the true educator, endearing him to his students or disciples, even those who learn from him only remotely. All of these qualities are eminently personified in Dr. Walter Shewhart. (Industrial Quality Control, May 1949, p.26)
Shewharts influence on ASQ runs deep. Shortly before his death, he remarked to members that they extended the field beyond my early visions and saw areas of service that pleased and amazed me. I hope that you continue.
Shewharts legacy lives in mementos of hima simple bowl and some numbered chips, a bronze medal, some books and writingsit lives in the succession of other prominent individuals he influenced, and it lives in the society of professionals who carry on the work he started.

參考資料:ASQ Shewhart page

2007年4月6日

線性差動變壓器(LVDT)

線性差動變壓器(Linera Variable Differential Transformer, LVDT) 是機電轉換器的一種﹐可以將物件的直線運動量轉換為電子信號﹐藉此精確感測物件的位置﹐其感應的精度可以達到0.01mm﹐是Poka-Yoke防誤法常用的感知器。

故障樹分析(Fault Tree Analysis, FTA)

故障樹分析或失效樹分析(Fault Tree Analysis, FTA):為品質改善工具之一﹐以某一失效模式為起點﹐此即為故障樹或失效樹之樹根。其後﹐各種可能的原因漸次加入故障樹中﹐形成所謂的故障樹。


Fault tree analysis

In the technique known as "fault tree analysis", an undesired effect is taken as the root ('top event') of a tree of logic. Then, each situation that could cause that effect is added to the tree as a series of logic expressions. When fault trees are labelled with actual numbers about failure probabilities, which are often in practice unavailable because of the expense of testing, computer programs can calculate failure probabilities from fault trees.



A fault tree diagram

The Tree is usually written out using conventional logic gate symbols. The route through a Tree between an event and an initiator in the tree is called a Cutset. The shortest credible way through the tree from Fault to initiating Event is called a Minimal Cutset.

Some industries use both Fault Trees and Event Trees (see Probabilistic Risk Assessment). An Event Tree starts from an undesired initiator (loss of critical supply, component failure etc) and follows possible further system events through to a series of final consequences. As each new event is considered, a new node on the tree is added with a split of probabilities of taking either branch. The probabilities of a range of 'top events' arising from the initial event can then be seen.

Classic programs include the EPRI (Electric Power Research Institute)'s CAFTA Software which is used by almost all the Nuclear Power Plants in the US and by a majority of US and international aerospace manufacturers and the Idaho National Laboratory's SAPHIRE, which is used by the U.S. government to evaluate the safety and reliability of nuclear reactors, the space shuttle, and the International Space Station.

Unified Modeling Language (UML) activity diagrams have been used as graphical components in a fault tree analysis.


2007年4月4日

終止產品(End of Life, EOL), 停止銷售(End of Sales, EOS)

End of Life是臨終的意思﹐End of Life Care則是對重症病人臨終照顧。就產品而言EOL有其他的意義﹐它是是一連串重要行動的開端﹐公司的業務部門必須提前在公司內發出產品的EOL會議﹐確保產品停產的同時不會有龐大的呆料﹐也要確保公司所需的保固零件已經適當保存﹐必要時得對供應商下最後採購訂單﹐以滿足各方之需求﹐同時也要與現有客戶協商﹐取得客戶之認同﹐正式發出停止銷售(End of Sales)之通知﹐必要時與客戶協商最後交貨日期與數量。

在綠色產品設計的年代﹐產品在設計初期就要考慮到產品End of Life時的各種考量﹐例如透過升級延長產品壽命﹑與後續其他產品的相容性﹑產品結束使用後的回收等!目前有Desing For Environment 成為學者專門研究的主題﹐其使產品對環境之衝擊降到最低。我們當另闢空間說明之。

除了綠色產品設計之外﹐公司也應建立最終產品處置系統(End of Life system)﹐適當建構的系統除了可以為公司創造營收之外﹐更可以藉此了解產品的使用狀況﹑磨損狀況﹐提供公司新產品設計之重要參考﹐Zerox是此中翹楚。

RoHS

RoHS:歐盟危害物質限用指令 (Restriction of Hazardous Substance)。

歐盟自2006年7月1日起,「限用有害物質指令」 (2002/95/EC,Restriction of the use of certain hazardous substance in electrical and electronic equipment,RoHS)即將生效。
根據該指令,所有在歐盟市場上出售的電子電氣設備必須禁止使用鉛
、水銀、鎘、六價鉻等重金屬,以及多溴二苯醚 (PBDE) 和多溴聯苯 (PBB) 等阻燃劑,往後在歐盟市場上,將禁止出售及使用含有某些有害物質的產品。所衝擊的對象,將集中在電器、電子、資訊與通訊產品,包括:電腦、傳真機、手機、遊戲機等各式資訊、通訊產品都受影響,不管是製程的改善、或是零組件的採購,都要著手改善。因此,如何在進料、製程及出貨中確保品質符合 RoHS 的綠色環保規定,已是各大廠商及其供應商重要的課題。
從歐盟這股綠色趨勢可以看出,先進國家為因應環保與能源議題,針對電子產品頻頻加嚴法令管制,儼然已形成一股新的「非關稅壁壘」。

RoHS 指令禁用物質種類及濃度,共六項如下:



RoHS 禁用物質名稱

RoHS 規範濃度 (ppm)



鎘 (Cd)

低於0.01% 或100ppm



鉛 (Pb)

低於0.1% 或1000ppm



汞 (Hg)

低於0.1% 或1000ppm



六價鉻 (Cr6+)

低於0.1% 或1000ppm



多溴聯苯類 (PBB)

低於0.1% 或1000ppm



多溴聯苯醚類 (PBDE)

低於0.1% 或1000ppm


EIA/ECCB 954 為基礎的綠色產品管理,這樣一個以 ISO 9001:2000 為基礎的管理系統標準 ,業界為管理有害物質的一項有效的工具。從設計公司至製造廠商,企業可以這個標準加強現有的管理,並在近日內預期接受驗證。

EIA/ECCB 954 是 IEC/IECQ 2006 年 3 月公佈對有害物質管理之系統標準,這是一項暫行規格。在 2006 年 10 月, IEC/IECQ 已經將這個標準提昇為正式的規格之一,並正式命名為「 QC 080000 電子電機零件及產品之有害物質流程管理系統要求 (Electrical and Electronic Components and Products Hazardous Substance Process Management System Requirements, HSPM) 」


物質安全資料表(Material Safety Data Sheet)

物質安全資料表(Material Safety Data Sheet, MSDS)﹐是工作安全的重要參考資料﹐表中記載相關物質之重要事項﹐提供工作人員及緊急事故處理人員相關之管理程序及工作安全注意事項﹐包括物理特性記錄(熔點﹑沸點﹑閃燃點)﹑毒性﹑健康影響﹑急救﹑滅火措施﹑安全處置與儲存方法等資料。


綠色產品的生命週期評估(Life Cycle Analysis, LCA)其中一項工作就是將使用到材料MSDS作審查﹐確定沒有使用到有害物質。關於MSDS表可以到勞工安全衛生研究所下載﹐對單一供應商或特殊物質則可以向供應商索取。

參考資料:
1. MSDS範例檔案: MSDS0001
2. 勞工安全衛生研究所

源流檢查(Source Inspection)

所謂源流檢查(Source Inspection)為新鄉重夫(Shigeo Shingo)所創見。他認為與其檢查產品或是半成品是否不良﹐不如就發生不良之根本原因(root cause)進行檢查﹐使不良品根本不會產生﹐這就是所謂源流檢查的基本想法。源流檢查若能與防誤法結合﹐則導入之效益將大增。

參考資料:Shigeo Shingo, Zero Quality Control: Source Inspection and the Poka-yoke System

 
Clicky Web Analytics